
Chapter 4
Latent Fingerprint Image Segmentation
Using Deep Neural Network

Jude Ezeobiejesi and Bir Bhanu

Abstract We present a deep artificial neural network (DANN) model that learns
latent fingerprint image patches using a stack of restricted Boltzmann machines
(RBMs), and uses it to perform segmentation of latent fingerprint images. Artificial
neural networks (ANN) are biologically inspired architectures that produce hierar-
chies of maps through learned weights or filters. Latent fingerprints are fingerprint
impressions unintentionally left on surfaces at a crime scene. Tomake identifications
or exclusions of suspects, latent fingerprint examiners analyze and compare latent fin-
gerprints to known fingerprints of individuals. Due to the poor quality and often com-
plex image background and overlapping patterns characteristic of latent fingerprint
images, separating the fingerprint region of interest from complex image background
and overlapping patterns is very challenging. Our proposed DANN model based on
RBMs learns fingerprint image patches in two phases. The first phase (unsupervised
pre-training) involves learning an identity mapping of the input image patches. In
the second phase, fine-tuning and gradient updates are performed to minimize the
cost function on the training dataset. The resulting trained model is used to classify
the image patches into fingerprint and non-fingerprint classes. We use the fingerprint
patches to reconstruct the latent fingerprint image and discard the non-fingerprint
patches which contain the structured noise in the original latent fingerprint. The pro-
posed model is evaluated by comparing the results from the state-of-the-art latent
fingerprint segmentation models. The results of our evaluation show the superior
performance of the proposed method.

J. Ezeobiejesi (B) · B. Bhanu
Center for Research in Intelligent Systems, University of California at Riverside,
Riverside, CA 92521, USA
e-mail: jezeobie@cs.ucr.edu

B. Bhanu
e-mail: bhanu@cris.ucr.edu

© Springer International Publishing AG 2017
B. Bhanu and A. Kumar (eds.), Deep Learning for Biometrics,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-3-319-61657-5_4

83



84 J. Ezeobiejesi and B. Bhanu

4.1 Introduction

Deep learning is a technique for learning features using hierarchical layers of neural
networks. There are usually two phases in deep learning. The first phase commonly
referred to as pre-training involves unsupervised, layer-wise training. The second
phase (fine-tuning) involves supervised training that exploits the results of the first
phase. In deep learning, hierarchical layers of learned abstraction are used to accom-
plish high level tasks [3]. In recent years, deep learning techniques have been applied
to a wide variety of problems in different domains [3]. Some of the notable areas that
have benefited from deep learning include pattern recognition [21], computer vision
[16], natural language processing, and medical image segmentation [17]. In many
of these domains, deep learning algorithms outperformed previous state-of-the-art
algorithms.

Latent fingerprints are fingerprint impressions unintentionally left on surfaces at a
crime scene. Latent examiners analyze and compare latent fingerprints to known fin-
gerprints of individuals tomake identifications or exclusions of suspects [9]. Reliable
latent fingerprint segmentation is an important step in the automation of latent finger-
print processing. Better latent fingerprint matching results can be achieved by having
automatic latent fingerprint segmentation with a high degree of accuracy. In recent
years, the accuracy of latent fingerprint identification by latent fingerprint forensic
examiners has been the subject of increased study, scrutiny, and commentary in the
legal system and the forensic science literature. Errors in latent fingerprint match-
ing can be devastating, resulting in missed opportunities to apprehend criminals or
wrongful convictions of innocent people. Several high-profile cases in the United
States and abroad have shown that forensic examiners can sometimes make mistakes
when analyzing or comparing fingerprints [14] manually. Latent fingerprints have
significantly poor quality ridge structure and large nonlinear distortions compared to
rolled and plain fingerprints. As shown in Fig. 4.1, latent fingerprint images contain
background structured noise such as stains, lines, arcs, and sometimes text. The poor
quality and often complex image background and overlapping patterns characteris-
tic of latent fingerprint images make it very challenging to separate the fingerprint
regions of interest from complex image background and overlapping patterns [29].
To process latent fingerprints, latent experts manually mark the regions of interest
(ROIs) in latent fingerprints and use the ROIs to search large databases of reference
full fingerprints and identify a small number of potential matches for manual exam-
ination. Given the large size of law enforcement databases containing rolled and
plain fingerprints, it is very desirable to perform latent fingerprint processing in a
fully automated way. As a step in this direction, this chapter proposes an efficient
technique for separating latent fingerprints from the complex image background
using deep learning. We learn a set of features using a hierarchy of RBMs. These
features are then passed to a supervised learning algorithm to learn a classifier for
patch classification.We use the result of the classification for latent fingerprint image
segmentation. To the best of our knowledge, no previous work has used this strategy
to segment latent fingerprints.



4 Latent Fingerprint Image Segmentation … 85

Fig. 4.1 Sample latent fingerprints from NIST SD27 showing three different quality levels a good,
b bad, and c ugly

The rest of the chapter is organized as follows: Sect. 4.2.1 reviews recent works in
latent fingerprint segmentation while Sect. 4.2.1.1 describes the contributions of this
chapter. Section4.3 highlights our technical approach and presents an overview of
RBMaswell discussion on learningwithRBMs. The experimental results and perfor-
mance evaluation of our proposed approach are presented in Sect. 4.4. Section4.4.5
highlights the impacts of diffusing the training dataset with fractal dimension and
lacunarity features on the performance of the network while Sect. 4.5 contains the
conclusions and future work.

4.2 Related Work and Contributions

4.2.1 Related Work

Recent studies carried out on latent fingerprint segmentation can be grouped into
three categories:

• Techniques based on classification of image patches
• Techniques based on clustering
• Techniques that rely on ridge frequency and orientation properties

The study presented in [9] falls into the first category. The authors performed image
segmentation by extracting 8× 8 nonoverlapping patches from a latent fingerprint
image and classifying them into fingerprint and non-fingerprint patches using fractal
dimension features computed for each image patch. They assembled the fingerprint
patches to build the fingerprint portion (segmented region of interest) of the original
image.

In the second category of approaches, Arshad et al. [4] used K-means clustering
to divide the latent fingerprint image into nonoverlapping blocks and computed the
standarddeviationof eachblock.They considered ablock as foreground if its standard



86 J. Ezeobiejesi and B. Bhanu

deviation is greater than a predefined threshold otherwise, it was a background block.
They used morphological operations to segment the latent fingerprint.

The approaches that fall into the third category rely on the analysis of the ridge
frequency and orientation properties of the ridge valley patterns to determine the
area within a latent fingerprint image that contains the fingerprint [4, 7, 13, 27, 29].
Choi et al. [7] used orientation tensor approach to extract the symmetric patterns of a
fingerprint and removed the structural noise in background. They used a local Fourier
analysis method to estimate the local frequency in the latent fingerprint image and
located fingerprint regions by considering valid frequency ranges. They obtained can-
didate fingerprint (foreground) regions for each feature (orientation and frequency)
and then localized the latent fingerprint regions using the intersection of those candi-
date regions. Karimi et al. [13] estimated local frequency of the ridge/valley pattern
based on ridge projection with varying orientations. They used the variance of fre-
quency and amplitude of ridge signal as features for the segmentation algorithm.They
reported segmentation results for only two latent fingerprint images and provided no
performance evaluation. Short et al. [27] proposed the ridge template correlation
method for latent fingerprint segmentation. They generated an ideal ridge template
and computed cross-correlation value to define the local fingerprint quality. They
manually selected six different threshold values to assign a quality value to each
fingerprint block. They neither provided the size and number for the ideal ridge tem-
plate nor reported evaluation criteria for the segmentation results. Zhang et al. [29]
proposed an adaptive total variation (TV) model for latent fingerprint segmentation.
They adaptively determined the weight assigned to the fidelity term in the model
based on the background noise level. They used it to remove the background noise
in latent fingerprint images.

Our approach uses a deep architecture that performs learning and classification in
a two-phase approach. The first phase (unsupervised pre-training) involves learning
an identity mapping of the input image patches. In the second phase (fine-tuning), the
model performs gradient updates to minimize the cost function on the dataset. The
trainedmodel is used to classify the image patches and the results of the classification
are used for latent fingerprint image segmentation.

4.2.1.1 Contributions

This chapter makes the following contributions:

• Modification of how the standard RBM learning algorithm is carried out to incor-
porate aweighting scheme that enables theRBM in the first layer tomodel the input
data with near zero reconstruction error. This enabled the higher level weights to
model the higher level data efficiently.

• A cost function based on weighted harmonic mean of missed detection rate and
false detection rate is introduced to make the network learn the minority class
better, and improve per class accuracy. By heavily penalizing the misclassication
of minority (fingerprint) class, the learned model is tuned to achieve close to zero
missed detection rate for the minority class.



4 Latent Fingerprint Image Segmentation … 87

• The proposed generative feature learning model and associated classifier yield
state-of-the-art performance on latent fingerprint image segmentation that is con-
sistent across many latent fingerprint image databases.

4.3 Technical Approach

Our approach involves partitioning a latent fingerprint image into 8× 8 nonoverlap-
ping blocks, and learning a set of stochastic features that model a distribution over
image patches using a generative multilayer feature extractor. We use the features
to train a single-layer perceptron classifier that classifies the patches into fingerprint
and non-fingerprint classes. We use the fingerprint patches to reconstruct the latent
fingerprint image and discard the non-fingerprint patches which contain the struc-
tured noise in the original latent fingerprint. The block diagram of our proposed
approach is shown in Fig. 4.2, and the architecture of the feature learning, extraction,
and classification model is shown in Fig. 4.3.

4.3.1 Restricted Boltzmann Machine

A restricted Boltzmannmachine is a stochastic neural network that consists of visible
layer, hidden layer, and a bias unit [11]. A sample RBM with binary visible and
hidden units is shown in Fig. 4.4. The energy function E f of RBM is linear in its free
parameters and is defined as [11]:

E f (x̂, h) = −
∑

i

bi x̂i −
∑

j

c j h j −
∑

i

∑

j

x̂iwi, j h j , (4.1)

where x̂ and h represent the visible and hidden units, respectively, W represents the
weights connecting x̂ and h, while b and c are biases of the visible and hidden units,
respectively. The probability distributions over visible or hidden vectors are defined
in terms of the energy function [11]:

P(x̂, h) = 1

ω
e−E f (x̂,h), (4.2)

where ω is a partition function that ensures the probability distribution of over all
possible configurations of the hidden or visible vectors sum to 1. Themarginal proba-
bility of a visible vector P(x̂) is the sum over all possible hidden layer configurations
[11] and is defined as:

P(x̂) = 1

ω

∑

h

e−E f (x̂,h) (4.3)



88 J. Ezeobiejesi and B. Bhanu

Fig. 4.2 Proposed approach

RBM has no intra-layer connections and given the visible unit activations, the
hidden unit activations are mutually independent. Also the visible unit activations
are mutually independent given the hidden unit activations [6]. The conditional prob-
ability of a configuration of the visible units is given by

P(x̂ |h) =
n∏

i=1

P(x̂i |h), (4.4)

where n is the number of visible units. The conditional probability of a configuration
of hidden units given visible units is



4 Latent Fingerprint Image Segmentation … 89

Fig. 4.3 Feature learning, extraction, and classification using a multilayer neural network. The
pre-training phase uses the input layer (visible units), and three hidden layers of RBM (L1, L2, L3).
The fine-tuning phase uses an RBM layer (L4) and a single-layer perceptron (L5). The output layer
has two output neurons (fingerprint and non-fingerprint). All the units are binary. hi, j is the jth node
in Li , wi, j is the weight connecting the ith node in layer Li to the jth node in layer Li−1. We set
n = 81 (64 from 8× 8 and 17 from diffusion), k = 800, d = 1000, e = 1200, g = 1200, t = 1200,
where n, k, d, e, g, t are the number of nodes in the input layer, L1, L2, L3, L4, L5, respectively

Fig. 4.4 Graphical depiction of RBM with binary visible and hidden units. xi , i = 1, . . . , 4, are
the visible units while hk , k = 1, . . . , 3, are the hidden units. bxi , i = 1, . . . , 4, are the biases for
the visible units and chk , k = 1, . . . , 3, are the biases for the hidden units



90 J. Ezeobiejesi and B. Bhanu

P(h|x̂) =
m∏

j=1

P(h j |x̂), (4.5)

where m is the number of hidden units. The individual activation probabilities are
given by

P(h j = 1|x̂) = σ

(
b j +

n∑

i=1

wi, j x̂i

)
(4.6)

and

P(x̂i = 1|h) = σ

⎛

⎝ci +
m∑

j=1

wi, j h j

⎞

⎠ , (4.7)

where ci is the ith hidden unit bias, b j is the jth visible unit bias, wi, j is the weight
connecting the ith visible unit and jth hidden unit, and σ is the logistic sigmoid.

4.3.2 Learning with RBM

Learningwith RBM involves several steps of sampling hidden variables given visible
variables, sampling visible variables given hidden variables, and minimizing recon-
struction error by adjusting the weights between the hidden unit and visible layers.
The goal of learning with RBM is to identify the relationship between the hidden
and visible variables using a process akin to identity mapping. We performed the
sampling step usingGibbs sampling technique enhancedwith contrastive divergence.

4.3.2.1 Gibbs Sampling

A sampling algorithm based onMonte CarloMarkovChain (MCMC) technique used
in estimating desired expectations in learning models. It allows for the computation
of statistics of a posterior distribution of given simulated samples from that distribu-
tion [28]. AGibbs sampling of the joint ofR random variables R = (R1, R2, . . . , Rn)

involves a sequence of R sampling sub-steps of the form Ri ∼ p(Ri |R−i ) where Ri

contains the n-1 other random variables in R excluding Ri . For RBMs, R = Q1 ∪ Q1

where Q1 = {x̂i } and Q2 = {hi }. Given that the sets Q1 and Q2 are conditionally
independent, the visible units can be sampled simultaneously given fixed values of
the hidden units using block Gibbs sampling. Similarly, the hidden units can be sam-
pled simultaneously given the visible units. The following is a step in the Markov
chain:
h(k+1) ∼ σ(WTv(k) + c)
x̂ (k+1) ∼ σ(Wh(k+1) + b),



4 Latent Fingerprint Image Segmentation … 91

where h(k) refers to the set of all hidden units at the kth step of the Markov chain and
σ denotes logistic sigmoid defined as

o(x) = 1

1 + e−Wvz(x)−b
(4.8)

with z(x) = 1

1 + e−Whx−c
, (4.9)

where Wh and c are the weight matrix and bias for the hidden layers excluding the
first layer, and z(x) is the activation of the hidden layer in the network.Wv is a weight
matrix connecting the visible layer to the first hidden layer, and b is a bias for the
visible layer.

4.3.2.2 Contrastive Divergence (CD-k)

This algorithm is used inside gradient descent procedure to speed upGibbs sampling.
It helps in optimizing the weight W during RBM training. CD-k speeds up Gibbs
sampling by taking sample after only k-steps of Gibbs sampling, without waiting for
the convergence of the Markov chain. In our experiments we set k=1.

4.3.2.3 Stochastic Gradient Descent

With large datasets, computing the cost and gradient for the entire training set is
usually very slow and may be intractable [24]. This problem is solved by Stochastic
Gradient Descent (SGD) by following the negative gradient of the objective function
after seeing a few training examples. SGD is used in neural networks to mitigate the
high cost of running backpropagation over the entire training set [24].

Given an objective function J (φ), the standard gradient descent algorithm updates
the parameters φ as follows:

φ = φ − α∇φE[J (φ], (4.10)

where the expectation E[J (φ] is obtained through an expensive process of evaluating
the cost and gradient over the entire training set. With SGD, the gradient of the
parameters are computed using a few training examples with no expectation to worry
about. The parameters are update as,

φ = φ − α∇φ J (φ; x (i), y(i)) (4.11)

where the pair (x (i), y(i)) are from the training set. Each parameter update is computed
using a few training examples. This reduces the variance in the parameter update with
the potential of leading to more stable convergence. Prior to each training epoch, we



92 J. Ezeobiejesi and B. Bhanu

randomly shuffled the training data to avoid biasing the gradient. Presenting the
training data to the network in a nonrandom order could bias the gradient and lead
to poor convergence.

One of the issues with learning with stochastic gradient descent is the tendency
of the gradients to decrease as they are backpropagated through multiple layer of
nonlinearity. We worked around this problem by using different learning rates for
each layer in the proposed network.

4.3.2.4 Cost Function

Our goal is to classify all fingerprint patches (minority class) correctly to meet our
segmentation objective of extracting the region of interest (fingerprint part) from
the latent fingerprint image. We introduced a cost function based on the weighted
harmonic mean of missed detection rate and false detection rate. We adopted a
weight assignment scheme that was skewed in favor of the minority class to make the
neural network learn the minority class better. Given a set of weights w1,w2, . . . ,wn

associated with a dataset x1, x2, . . . , xn , the weighted harmonic mean H is defined
as

H =
∑n

i=1 wi∑n
i=1

wi
xi

=
(∑n

i=1 wi x
−1
i∑n

i=1 wi

)−1

. (4.12)

By penalizing the misclassification of minority class more, the model learned to
detect minority class with a high degree of accuracy. The cost function is defined as:

C = 2
1

τMDR + 1
τ FDR

, (4.13)

where τMDR and τ FDR are the weighted missed detection rate and weighted
false detection rate, respectively. They are computed as: τMDR = τ1 ∗ MDR and
τ FDR = τ2 ∗ FDR, where τ1 = Ps+Ns

Ps
and τ2 = Ps+Ns

Ns
are the weights assigned to

positive class samples Ps and negative class samples Ns , respectively.
Table4.1 shows a comparison of the error cost during the fine-tuning phase of our

model with cross entropy cost function, and the proposed cost function.

4.3.3 Choice of Hyperparameters

We selected the value of the hyperparameters used in the proposed network based
on the performance of the network on the validation set. The parameters and their
values are shown in Table4.2.



4 Latent Fingerprint Image Segmentation … 93

Table 4.1 Comparison of model performance using regular cost function (cross entropy) and
proposed cost function. The mean, maximum, and minimum error costs are better (smaller is better)
with the proposed cost function. With the proposed cost function, the model is tuned to achieve a
low missed detection rate

Cost function Min. error cost Max. error cost Mean error cost

Cross entropy 3.53E-03 1.041E+00 6.29E-02

Proposed 6.00E-04 1.10E-02 2.03E-03

Table 4.2 Parameters and values

Parameter L0 L1 L2 L3 L4 L5 L6

Number of neurons 81 800 1000 1200 1200 1200 2

Batch size – 100 100 100 100 100 –

Epochs – 50 50 50 50 – –

Learning rate – 1e-3 5e-4 5e-4 5e-4 – –

Momentum – 0.70 0.70 0.70 0.70 –

Number of iterations – – – – – 50 –

4.3.3.1 Unsupervised Pre-training

We adopt unsupervised layer-wise pre-training because of its power in capturing
the dominant and statistically reliable features present in the dataset. The output of
each layer is a representation of the input data embodying those features. According
to [8], greedy layer-wise unsupervised pre-training overcomes the challenges of
deep learning by introducing a useful prior to the supervised fine-tuning training
procedure. After pre-training a layer, its input sample is reconstructed and the mean
square reconstruction error is computed. The reconstruction step entails guessing
the probability distribution of the original input sample in a process referred to as
generative learning. Unsupervised pre-training promotes input transformations that
capture the main variations in the dataset distribution [8]. Since there is a possibility
that only a small subset of these variations may be relevant for predicting the class
label of a sample, using a small number of nodes in the hidden layers will make
it less likely for the transformations necessary for predicting the class label to be
included in the set of transformations learned by unsupervised pre-training. This
idea is reflected in our choice of the number of nodes in the pre-training layers. We
ran several experiments to determine the optimal nodes in each of the three pre-
training layers. As shown in Table4.2, the number of nodes in the pre-training layers
L1, L2, and L3 are 800, 1000, and 1200, respectively.



94 J. Ezeobiejesi and B. Bhanu

4.3.3.2 Supervised Fine-Tuning

Supervised fine-tuning is the process of backpropagating the gradient of a classi-
fier’s cost through the feature extraction layers. Supervised fine-tuning boosts the
performance of neural networks with unsupervised pre-training [19]. In our model,
supervised fine-tuning is done with a layer of RBM and a single-layer perceptron
depicted as L4 and L5, respectively in Fig. 4.3. During the fine-tuning phase, we
initialized L4, with the pre-trained weights of the top-most pre-training layer L3.

4.4 Experiments and Results

We implemented our algorithms in MATLAB R2014a running on Intel Core i7 CPU
with 8GB RAM and 750GB hard drive. Our implementation relied on NNBox, a
MATLAB toolbox for neural networks. The implementation uses backpropagation,
contrastive divergence, Gibbs sampling, and hidden units sparsity based optimization
techniques.

4.4.1 Latent Fingerprint Databases

We tested our model on the following databases:
• NIST SD27: This database was acquired from the National Institute of Standards
and Technology. It contains images of 258 latent crime scene fingerprints and their
matching rolled tenprints. The images in the database are classified as good, bad,
or ugly based on the quality of the image. The latent prints and rolled prints are
at 500 ppi.
• WVU Database: This database is jointly owned by West Virginia University and
the FBI. It has 449 latent fingerprint images and matching 449 rolled fingerprints.
All images in this database are at 1000 ppi.
• IIITD Database:The IIITDwas obtained from the ImageAnalysis andBiometrics
lab at the Indraprastha Institute of Information Technology, Delhi, India [25]. There
are 150 latent fingerprints and 1,046 exemplar fingerprints. Some of the fingerprint
images are at 500 ppi while others are at 1000 ppi.

4.4.2 Performance Evaluation and Metrics

We used the following metrics to evaluate the performance of our network.

• Missed Detection Rate (MDR): This is the percentage of fingerprint patches
classified as non-fingerprint patches and is defined as.



4 Latent Fingerprint Image Segmentation … 95

MDR = FN

T P + FN
(4.14)

where FN is the number of false negatives and TP is the number of true positives.
• False Detection Rate (FDR): This is the percentage of non-fingerprint patches
classified as fingerprint patches.It is defined as

FDR = FP

T N + FP
(4.15)

where FP is the number of false positives and TN is the number of true negatives.
• Segmentation Accuracy (SA): It gives a good indication of the segmentation
reliability of the model.

SA = T P + T N

T P + FN + T N + FP
(4.16)

4.4.3 Stability of the Architecture

To investigate the stability of the proposed architecture, we performed five runs
of training the network using 50,000 training samples. All the model parameters
(number of epochs, number of iterations etc.) shown inTable4.2 remained unchanged
across the runs. The mean square reconstruction error (msre), mean error cost, and
standard deviation for the five runs are shown in Table4.3. Plots of the reconstruction
errors against number of training epochs as well as that of error cost against number
or iterations during each run are shown in Fig. 4.5. These results show that our
model is stable.

Table 4.3 Network Stability: The msre, error cost, MDR, FDR, and training accuracy for the five
different runs are close. The mean and standard deviation indicate stability across the five runs

Run # MSRE Error cost MDR FDR Training accuracy

1 0.0179 5.469e-04 2.010e-04 0.00 4.00e-05

2 0.0183 5.406e-04 3.020e-04 0.00 6.00e-05

3 0.0178 5.560e-04 1.010e-04 0.00 2.00e-05

4 0.0179 5.438e-04 2.020e-04 0.00 5.00e-05

5 0.0178 6.045e-04 1.010e-04 0.00 2.00e-05

Mean 0.0179 5.584e-04 1.814e-04 0.00 3.800e-05

Standard deviation 0.0002 2.643e-05 8.409e-05 0.00 1.789e-05



96 J. Ezeobiejesi and B. Bhanu

Fig. 4.5 Network Stability: a shows that the mean square reconstruction error (msre) followed
the same trajectory during the five different runs, converging close to 0.02% msre. Similarly,
b shows that the error cost during the fine-tuning phase followed the same trajectory for the five
runs, converging to about 5.5E-04 error cost. The results are indicative of the stability of the network

4.4.4 Segmentation Using the Trained Network

To segment a latent fingerprint image using the trained network we proceed as
follows:

• Split the image into 8× 8 nonoverlapping patches and augment each patch data
with its fractal dimension and lacunarity features to create a segmentation dataset.

• Normalize the segmentation dataset to have 0 mean and unit standard deviation.
• Load the trained network and compute activation value for each neuron:
a = ∑

Wx
• Feed the activation value to the activation function to normalize it.
• Apply the following thresholding function to obtain the classification results:

θ(x) =
{
1 : z > T
0 : z ≤ T

(4.17)

where z is the decision value, x is an example from the segmentation dataset, T is
a threshold that gave the best segmentation accuracy on a validation set and was
obtained using fivefold cross validation described in Algorithm 1.

4.4.4.1 Searching for Threshold T

We implemented a hook into the logic of output neurons to access the real-valued
output of the activation function. To obtain the percentage of the activation function
output for a given neuron, we divided its activation function value by the sum of all
activation function values. For each label y ∈ 1, 2, we ordered the validation exam-
ples according to their decision values (percentages) and for each pair of adjacent
decision values, we checked the segmentation accuracy using their average as T. The
algorithm used was inspired by [10], and is shown as Algorithm 1.



4 Latent Fingerprint Image Segmentation … 97

Algorithm 1 Searching for threshold T
1: procedure Threshold(X, Y ) � X is the patch dataset, Y is a set of corresponding labels
2: num_class ← Unique(Y ) � Get unique labels from Y
3: for cs = 1, . . . , num_class do � Iterate over the number of classes
4: (a) f olds ← Spli t (X, 5) � Split the validation set into five folds
5: for f = 1, . . . , f olds do � Iterate over the folds

6: (i) Run Compute(.) on four folds of validation set � Run four folds through the
trained network

7: (ii)T f
c ← Best () � Set T f

c to the decision value that achieved the best MDR
8: (b) Run Compute(.) on X � Run the validation set through the trained network

9: Tc ← 1
5

∑ f olds
k=1 T k

c � Set the threshold to the average of the five thresholds from cross
validation

10: return T � Return the threshold

4.4.5 Dataset Diffusion and Impact on Model Performance

Given a dataset X = {x1, x2, . . . , xk}, we define the diffusion of X as X̂ =
{x1, x2, . . . , xm}, where m > k and each xi , k < i < m is an element from Rn . In
other words, X̂ is obtained by expanding X with new elements from Rn . A similar
idea based on the principle of information diffusion has been used by researchers
in situations, where the neural network failed to converge despite adjustments of
weights and thresholds [12, 22]. We used features based on fractal dimension and
lacunarity to diffuse X. These features help to characterize complex texture in latent
fingerprint images [9].

4.4.5.1 Fractal Dimension

Fractal dimension is an index used to characterize texture patterns by quantifying
their complexity as a ratio of the change in detail to the change in the scale used.
It was defined by Mandelbrot [23] and was first used in texture analysis by Keller
et al. [15]. Fractal dimension offers a quantitative way to describe and characterize
the complexity of image texture composition [18].

We compute the fractal dimension of an image patch P using a variant of differ-
ential box counting (DBC) algorithm [2, 26]. We consider P as a 3-D spatial surface
with (x,y) axis as the spatial coordinates and z axis for the gray level of the pixels.
Using the same strategy as in DBC, we partition the N × N matrix representing P
into nonoverlapping d × d blocks where d ∈ [1, N ]. Each block has a column of
boxes of size d × d × h, where h is the height defined by the relationship h = T d

N ,
where T is the total gray levels in P, and d is an integer. Let Tmin and Tmax be the
minimum and maximum gray levels in grid (i, j), respectively. The number of boxes
covering block (i, j) is given by:



98 J. Ezeobiejesi and B. Bhanu

nd(i, j) = f loor [Tmax − Tmin

r
] + 1, (4.18)

where r = 2, . . . , N − 1, is the scaling factor and for each block r = d. The number
of boxes covering all d × d blocks is:

Nd =
∑

i, j

nd(i, j) (4.19)

We compute the values Nd for all d ∈ [1, N ]. The fractal dimension of each pixel
in P is by given by the slope of a plot of the logarithm of the minimum box number
as a function of the logarithm of the box size. We obtain a fractal dimension image
patch P ′ represented by an M × N matrix whose entry (i, j) is the fractal dimension
FDi j of the pixel at (i, j) in P.

FDP =
MN∑

i=1, j=1

FDi j (4.20)

� Fractal Dimension Features: We implemented a variant of theDBC algorithm
[2, 26], to compute the following statistical features from the fractal dimension
image P ′.

• Average Fractal Dimension:

FDavg = 1

MN

MN∑

i=1, j=1

FDi j (4.21)

• Standard Deviation of Fractal Dimension: The standard deviation of the gray
levels in an image provides a degree of image dispersion and offers a quantitative
description of variation in the intensity of the image plane. Therefore

FDstd = 1

MN

MN∑

i=1, j=1

(FDi j − FDavg)
2, (4.22)

• Fractal Dimension Spatial Frequency: This refers to the frequency of change
per unit distance across fractal dimension (FD) processed image. We compute it
using the formula for (spatial domain) spatial frequency [20]. Given an N × N FD
processed image patch P ′, let G(x,y) be the FD value of the pixel at location (x,y) in
P ′. The row frequency R f and column frequency C f are given by

R f =
√√√√ 1

MN

M−1∑

x=0

N−1∑

y=1

[G(x, y) − G(x, y − 1)]2 (4.23)



4 Latent Fingerprint Image Segmentation … 99

C f =
√√√√ 1

MN

M−1∑

y=0

N−1∑

x=1

[G(x, y) − G(x − 1, y)]2 (4.24)

The FD spatial frequency FDs f of P ′ is defined as

FDs f =
√
R2

f + C2
f (4.25)

From signal processing perspective, Eqs. (4.23) and (4.24) favor high frequencies
and yield values indicative of patches with fingerprint.

4.4.5.2 Lacunarity

Lacunarity is a second-order statistic that provides a measure of how patterns fill
space. Patterns that have more or larger gaps have higher lacunarity. It also quantifies
rotational invariance and heterogeneity. A spatial pattern that has a high lacunarity
has a high variability of gaps in the pattern, and indicates a more heterogeneous
texture [5]. Lacunarity (FDlac) is defined in terms of the ratio of variance over mean
value [2].

FDlac =
1

MN (
∑M−1

i=1

∑N−1
j=1 P(i, j)2)

{ 1
MN

∑M−1
i=1

∑N−1
j=1 P(i, j)}2 − 1, (4.26)

where M and N are the sizes of the fractal dimension image patch P.

4.4.5.3 Diffusing the Dataset

We followed standard engineering practice to select the architecture of our model.
To improve the performance of the model, we tried various data augmentation tech-
niques such as label preserving transformation and increasing/decreasing the number
minority/majority samples to balance the dataset. We also tried other learning tech-
niques such as one class learning. None of those techniques yielded the desired
segmentation results.

Due to discriminative capabilities of fractal dimension and lacunarity features,
we used them to diffuse the patch dataset. From experiments, we observed that by
diffusing the dataset with these features before normalizing the data yielded a trained
model that has better generalization on unseen examples. A comparison of the results
obtained with and without dataset diffusion is shown in Fig. 4.6. As can be seen from
Table4.4, when the training dataset was augmented with FD features, there was a
huge drop in both error cost during fine-tuning and the classification error during



100 J. Ezeobiejesi and B. Bhanu

Fig. 4.6 Impact of Data Diffusion on Model Performance. a shows that during the pre-training
phase, the network achieves lower mean square reconstruction error (msre) when the dataset is
diffused with fractal dimension features. Also, as can be seen from b, diffusing the dataset leads to
faster convergence and lower error cost during the fine-tuning phase

Table 4.4 Data diffusion and network performance

MSRE Error cost Classification error (Training) (%)

Without diffusion 0.0179 7.97e-01 18.51

With diffusion 0.0178 6.0456e-04 0.006

training. It is interesting to note that the reconstruction error almost remained the
same in both cases.

4.4.6 Classification and Segmentation Results

4.4.6.1 Training, Validation, and Testing

We studied the performance of our model when trained on one latent fingerprint
database and tested on another using 3 sets of 20,000 patches, 40% drawn from
good, 30% from bad, and 30% from ugly images from NIST, WVU, and IIITD
databases. In each of the three experiments, 10,000 patches from a set were used
for training, 4,000 for validation, and 6,000 for testing. The results are shown in
Table4.5.

The final training, validation and testing of the model was done with 233,200
patches from the NIST SD27 database with 40% from good, 30% from bad, and
30% from ugly NIST image categories. 132,000 examples were used for training,
48,000 for validation, and 53,200 for testing. Table4.6 shows the confusion matrix
for NIST SD 27 and Table4.7 shows the TP, TN, FP, and FN, MDR, FDR and
classification accuracy on the training, validation, and testing datasets. There was no



4 Latent Fingerprint Image Segmentation … 101

Table 4.5 Model performance when trained and tested on different latent fingerprint databases.
The numbers in bracket delimited with colon are the training, validation, and testing datasets,
respectively. The three datasets are independent. The training and validation datasets shown in
column 1 of the last row were obtained exclusively from NIST SD27 database. The testing sets
are independent of the training set and were obtained from the target testing database in column
5. MDRV and FDRV are the validation MDR and FDR, respectively. Similarly, MDRT and
FDRT are the testing MDR and FDR, respectively. As shown in the last row, there was a marked
improvement in the model performance when more training data was used. When we tried more
than 132,000 patches for training, there was no appreciable performance gain despite more training
time required to achieve convergence
Train on Validate on MDRV

(%)
FDRV

(%)
Test on MDRT

(%)
FDRT

(%)

NIST SD27 (10,000 : 4,000 : 6,000) NIST SD27 2.95 1.92 NIST SD27 3.04 1.98

WVU 3.75 2.25

IIITD 3.63 2.19

WVU (10,000 : 4,000 : 6,000) WVU 3.12 2.54 NIST SD27 3.61 3.01

WVU 3.22 2.87

IIITD 3.90 3.05

IIITD (10,000 : 4,000 : 6,000) IIITD 3.32 2.66 NIST SD27 3.49 3.19

WVU 3.86 3.16

IIITD 3.28 2.80

NIST SD27 (132,000 : 48,000 : 53,200) NIST SD27 1.25 0 NIST SD27 1.25 0

WVU 1.64 0.60

IIITD 1.35 0.54

Table 4.6 NIST SD27—Confusion matrix for training, validation, and testing

Predicted patch class (Training)

Fingerprint Non-Fingerprint

Actual patch class Fingerprint 23,667 9

Non-Fingerprint 0 108,324

Predicted patch class (Validation)

Fingerprint Non-Fingerprint

Actual patch class Fingerprint 12,946 154

Non-Fingerprint 0 34,900

Predicted patch class (Testing)

Fingerprint Non-Fingerprint

Actual patch class Fingerprint 15,291 193

Non-Fingerprint 0 37,716



102 J. Ezeobiejesi and B. Bhanu

Table 4.7 NIST SD27—Training, Validation and Testing Accuracy: Training: 132,000
8× 8 patches; Validation: 48,000 8× 8 patches; Testing: 53,200 8× 8 patches. MDR =

FN
T P+FN ; FDR = FP

T N+FP

TP TN FP FN MDR
(%)

FDR (%) Classification
accuracy (%)

Training 23,667 108,324 0 9 0.04 0 99.96

Validation 12,946 34,900 0 154 1.17 0 98.83

Testing 15,291 37,716 0 193 1.25 0 98.75

noticeable performance gain when the model was trained with more than 132,000
patches.

4.4.6.2 Segmentation Results

Figures4.7, 4.8, and 4.9 show the segmentation results of our proposed method on
sample good, bad, and ugly quality images from theNISTSD27 database. The figures
show the original latent fingerprint images and the segmented fingerprints and non-
fingerprints constructed using patches classified as fingerprints and non-fingerprints.

Fig. 4.7 NIST Good Category Latent fingerprint image and segmentation result without post clas-
sification processing. a and d Original images b and e Fingerprints c and f Non-fingerprints



4 Latent Fingerprint Image Segmentation … 103

Fig. 4.8 NIST Bad Category [1] Latent Fingerprint Image and segmentation result without post
classification processing. g and j Original images; h and k Fingerprints i and l Non-fingerprints

The segmentation results for WVU and IIITD are not shown due to restrictions in
the database release agreement (Fig. 4.10).

4.4.7 Comparison with Current Algorithms

Table4.8 shows the superior performance of our segmentation approach on the good,
bad, anduglyquality latent fingerprints fromNISTSD27compared to the results from
existing algorithms on the same database. It also shows the performance comparison
of our model onWVU and IIITDwith other algorithms that reported results on those
latent fingerprint databases.



104 J. Ezeobiejesi and B. Bhanu

Fig. 4.9 NIST Ugly Category Latent Fingerprint Image and segmentation result without post
classification processing. m and p Original images n and q Fingerprints o and r Non-fingerprints

Fig. 4.10 Segmentation
reliability in different
databases for good quality
images. This shows the
results of training our model
on NIST SD27 and testing
on NIST SD27, WVU, and
IIITD latent databases. The
choice of latent fingerprint
database used during training
has small impact on the
performance of our network.
This assertion is also
supported by the results in
Table4.5



4 Latent Fingerprint Image Segmentation … 105

Table 4.8 Comparison with other algorithms on various datasets

Author Approach Database MDR % FDR % Average

Choi et al. [7] Ridge orientation
and frequency
computation

NIST SD27 14.78 47.99 31.38

WVU LDB 40.88 5.63 23.26

Zhang et al. [29] Adaptive total
variation model

NIST SD27 14.10 26.13 20.12

Arshad et al. [4] K-means
clustering

NIST SD27 4.77 26.06 15.42

Jude and Bhanu [9] Fractal dimension
& Weighted ELM

NIST SD27
(Good, Bad, Ugly)

9.22 18.7 13.96

WVU LDB (Good,
Bad, Ugly)

15.54 9.65 12.60

IIITD LDB (Good) 6.38 10.07 8.23

This chapter Deep learning NIST SD27
(Good, Bad, Ugly)

1.25 0.04 0.65

WVU LDB (Good,
Bad, Ugly)

1.64 0.60 1.12

IIITD (Good) 1.35 0.54 0.95

4.5 Conclusions and Future Work

We proposed a deep architecture based on restricted Boltzmann machine for latent
fingerprint segmentation using image patches and demonstrated its performance on
the segmentation of latent fingerprint images. The model learns a set of stochastic
features that model a distribution over image patches. Using the features extracted
from the image patches, the model classifies the patches into fingerprint and non-
fingerprint classes.We use the fingerprint patches to reconstruct the latent fingerprint
image and discard the non-fingerprint patches which contain the structured noise in
the original latent fingerprint. We demonstrated the performance of our model in the
segmentation of good, bad, and ugly latent fingerprints from the NIST SD27, as well
as WVU and IIITD latent fingerprint databases. We showed that the overall perfor-
mance of our deep model is superior to that obtained with the state-of-the-art latent
fingerprint image segmentation algorithms. Our future work involves developing
algorithms for feature extraction and matching for the segmented latent fingerprints.

Acknowledgements This research was supported in part by the Presley Center for Crime and
Justice Studies, University of California, Riverside, California, USA.



106 J. Ezeobiejesi and B. Bhanu

References

1. NIST Special Database 27. Fingerprint Minutiae from Latent and Matching Ten-print Images,
http://www.nist.gov/srd/nistsd27.htm

2. O. Al-Kadi, D. Watson, Texture analysis of aggressive and nonaggressive lung tumor CE CT
images. IEEE Trans. Biomed. Eng. 55(7), 1822–1830 (2008)

3. I. Arel, D.C. Rose, T.P. Karnowski, Deep machine learning - a new frontier in artificial intelli-
gence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010)

4. I. Arshad, G. Raja, A. Khan, Latent fingerprints segmentation: feasibility of using clustering-
based automated approach. Arabian J. Sci. Eng. 39(11), 7933–7944 (2014)

5. M. Barros Filho, F. Sobreira, Accuracy of lacunarity algorithms in texture classification of
high spatial resolution images from urban areas, in XXI Congress of International Society of
Photogrammetry and Remote Sensing (2008)

6. M.A. Carreira-Perpinan, G. Hinton, On contrastive divergence learning, in AISTATS, vol. 10
(Citeseer, 2005), pp. 33–40

7. H. Choi, A.I.B.M. Boaventura, A. Jain, Automatic segmentation of latent fingerprints, in 2012
IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS)
(2012), pp. 303–310

8. D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, S. Bengio, Why does unsuper-
vised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

9. J. Ezeobiejesi, B. Bhanu, Latent fingerprint image segmentation using fractal dimension fea-
tures and weighted extreme learning machine ensemble, in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops (2016)

10. R.-E. Fan, C.-J. Lin, A Study on Threshold Selection for Multi-label Classification. Department
of Computer Science (National Taiwan University, 2007), pp. 1–23

11. G. Hinton. A Practical Guide to Training Restricted Boltzmann Machines, Version 1 (2010)
12. C. Huang, C. Moraga, A diffusion-neural-network for learning from small samples. Int. J.

Approx. Reason. 35(2), 137–161 (2004)
13. S. Karimi-Ashtiani, C.-C. Kuo, A robust technique for latent fingerprint image segmentation

and enhancement, in 15th IEEE International Conference on Image Processing, 2008, ICIP
2008 (2008), pp. 1492–1495

14. D. Kaye, T. Busey, M. Gische, G. LaPorte, C. Aitken, S. Ballou, L.B. ..., K. Wertheim, Latent
print examination and human factors: improving the practice through a systems approach, in
NIST Interagency/Internal Report (NISTIR) - 7842 (2012)

15. J. Keller, S. Chen, R. Crownover, Texture description and segmentation through fractal geom-
etry. Comput. Vis. Graph. Image Process. 45(2), 150–166 (1989)

16. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional
neural networks, in Advances in Neural Information Processing Systems (2012), pp. 1097–
1105

17. M. Lai, Deep learning for medical image segmentation (2015), arXiv:1505.02000
18. A.D.K.T. Lam, Q. Li, Fractal analysis and multifractal spectra for the images, in 2010 Interna-

tional Symposium on Computer Communication Control and Automation (3CA), vol. 2 (2010),
pp. 530–533

19. P. Lamblin, Y. Bengio, Important gains from supervised fine-tuning of deep architectures on
large labeled sets, inNIPS* 2010DeepLearning andUnsupervisedFeature LearningWorkshop
(2010)

20. S. Li, J.T. Kwok, Y. Wang, Combination of images with diverse focuses using the spatial
frequency. Inf. Fus. 2(3), 169–176 (2001)

21. Y. Liu, E. Racah, P.J. Correa, A. Khosrowshahi, D. Lavers, K. Kunkel, M. Wehner, W.D.
Collins, Application of deep convolutional neural networks for detecting extreme weather in
climate datasets (2016), CoRR abs/1605.01156

22. Z. Makó, Approximation with diffusion-neural-network, in 6th International Symposium of
Hungarian Researchers on Computational Intelligence (2005), pp. 18–19



4 Latent Fingerprint Image Segmentation … 107

23. B. Mandelbrot, The Fractal Geometry of Nature. Einaudi paperbacks (Henry Holt and
Company, New York, 1983)

24. A. Ng, J. Ngiam, C.Y. Foo, http://ufldl.stanford.edu/tutorial/supervised/optimizationstochastic
gradientdescent/, UFLDL Tutorial

25. A. Sankaran, M. Vatsa, R. Singh, Hierarchical fusion for matching simultaneous latent finger-
print, in 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and
Systems (BTAS) (2012), pp. 377–382

26. N. Sarkar, B.B. Chaudhuri, An efficient differential box-counting approach to compute fractal
dimension of image. IEEE Trans. Syst. Man Cybern. 24(1), 115–120 (1994)

27. N. Short, M. Hsiao, A. Abbott, E. Fox, Latent fingerprint segmentation using ridge template
correlation, in 4th International Conference on Imaging for Crime Detection and Prevention
2011 (ICDP 2011) (2011), pp. 1–6

28. I. Yildirim, Bayesian inference: Gibbs sampling. Technical Note, University of Rochester
(2012)

29. J. Zhang,R. Lai, C.-C.Kuo, Latent fingerprint segmentationwith adaptive total variationmodel,
in 2012 5th IAPR International Conference on Biometrics (ICB) (2012), pp. 189–195


